PENERAPAN CONVOLUTIONAL NEURAL NETWORK PADA PENGENALAN BAHASA ISYARAT INDONESIA SECARA REAL-TIME

Authors

  • Rifki Ryan Maulana Universitas Satya Negara Indonesia
  • Abdul Kholiq Universitas Satya Negara Indonesia
  • Edy Widodo Universitas Pelita Bangsa

DOI:

https://doi.org/10.59134/jsk.v10i2.763

Keywords:

Indonesian Sign Language, BISINDO, CNN, MobileNetV2, TensorFlow Lite, Android, image classification, deaf communication

Abstract

Sign language is a form of visual communication used by individuals who are deaf or speech-impaired. However, many people in the general public still lack understanding of sign language, which hinders communication between people with disabilities and their surroundings. This research aims to develop a real-time alphabet translator system for Indonesian Sign Language (BISINDO), implemented as an Android application. The system utilizes a Convolutional Neural Network (CNN) model based on the MobileNetV2 architecture, which is trained to recognize 26 alphabet letters from hand gesture images sized 128x128 pixels in RGB format. The dataset was collected and processed through augmentation and divided into training, validation, testing, and evaluation sets. The model was trained using transfer learning and fine-tuning methods and then converted into TensorFlow Lite (.tflite) format for deployment on Android devices. Evaluation results show that the model achieved an average accuracy of 93% on the evaluation dataset. Testing the Android application also demonstrated good real-time performance in recognizing hand gestures. This application is expected to help bridge communication between people with disabilities and the general public through practical and accessible technology.

References

Abdurrahman, F. M. (2019). Pengenalan Bahasa Isyarat Indonesia dengan Algoritma Convolutional Neural Network (CNN) menggunakan Kinect 2.0. https://repository.its.ac.id/61176/

Adam Nurmansyah, Nanda Rizqia Rhamadhani, Sabrina Alfarissy Nur Hakim, Sri Azhari Agustin, & Siti Hamidah. (2023). Permasalahan Komunikasi Yang Kerap Terjadi Pada Penyandang Disabilitas. Jurnal Pendidikan, Bahasa Dan Budaya, 2(2), 200–210. https://doi.org/10.55606/jpbb.v2i2.1515

Ahmad Hania, A. (2017). Mengenal Artificial Intelligence, Machine Learning, & Deep Learning. Jurnal Teknologi Indonesia, 1(June), 1–6. https://amt-it.com/mengenal-perbedaan-artificial-inteligence-machine-learning-deep-learning/

Althanio, J. G., & Saragih, R. B. R. (2024). Komunikasi Interpersonal Pada Penyandang Tunarungu Dalam Interaksi Sosial di Kota Bengkulu Interpersonal Communication of Deaf People in Social Interactions in Bengkulu City. 8(2).

Aufar, Y., & Kaloka, T. P. (2022). Robusta coffee leaf diseases detection based on MobileNetV2 model. International Journal of Electrical and Computer Engineering, 12(6), 6675–6683. https://doi.org/10.11591/ijece.v12i6.pp6675-6683

Budiman, S. N., Lestanti, S., Yuana, H., & Awwalin, B. N. (2023). SIBI (Sistem Bahasa Isyarat Indonesia) berbasis Machine Learning dan Computer Vision untuk Membantu Komunikasi Tuna Rungu dan Tuna Wicara. Jurnal Teknologi Dan Manajemen Informatika, 9(2), 119–128. https://doi.org/10.26905/jtmi.v9i2.10993

Chollet, F. (2017). Deep Learning with Python. Manning Publications.

Developers, A. (2025). Mengenal Android Studio. https://developer.android.com/studio/intro?hl=id

Developers, G. (2024). CameraX overview. Android Developers. https://developer.android.com/training/camerax

Hartati, S. (2021). Kecerdasan Buatan Berbasis Pengetahuan. UGM PRESS.

Huroniyah, F., & Martita, L. (2023). Implementasi Metode Bahasa Isyarat Indonesia (BISINDO) untuk Meningkatkan Kepercayaan Diri Anak Tunarungu di SLBN Tompokersan Lumajang. Indonesian Journal of Disability …. https://disabilitas.uinkhas.ac.id/index.php/IJDR/article/view/17%0Ahttps://disabilitas.uinkhas.ac.id/index.php/IJDR/article/download/17/13

Pressman, R. S. (2015). Software Engineering: A Practitioner’s Approach (8th ed.). McGraw-Hill Education.

Ridhovan, A., & Suharso, A. (2022). Penerapan Metode Residual Network (Resnet) Dalam Klasifikasi Penyakit Pada Daun Gandum. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 7(1), 58–65. https://doi.org/10.29100/jipi.v7i1.2410%0D

Sandler, M., et al. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. https://arxiv.org/abs/1801.04381

Sholawati, M., Auliasari, K., & Ariwibisono, F. (2022). Pengembangan Aplikasi Pengenalan Bahasa Isyarat Abjad Sibi Menggunakan Metode Convolutional Neural Network (Cnn). JATI (Jurnal Mahasiswa Teknik Informatika), 6(1), 134–144. https://doi.org/10.36040/jati.v6i1.4507

TensorFlow. (2023). Keras Overview. TensorFlow Official Documentation. https://www.tensorflow.org/guide/keras

Wulan Anggraini. (2020). DEEP LEARNING UNTUK DETEKSI WAJAH YANG BERHIJAB MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN) DENGAN TENSORFLOW. 2507(February), 1–9.

Downloads

Published

2025-09-01

How to Cite

Maulana, R. R., Abdul Kholiq, & Edy Widodo. (2025). PENERAPAN CONVOLUTIONAL NEURAL NETWORK PADA PENGENALAN BAHASA ISYARAT INDONESIA SECARA REAL-TIME. JURNAL SATYA INFORMATIKA, 10(2), 114–120. https://doi.org/10.59134/jsk.v10i2.763

Most read articles by the same author(s)